The EXOD search for faint transients in XMM-Newton observations: Method and discovery of four extragalactic Type I X-ray bursters

Author:

Pastor-Marazuela I.,Webb N. A.,Wojtowicz D. T.,van Leeuwen J.

Abstract

Context. The observations carried out with XMM-Newton have produced a very extensive X-ray source catalogue in which the standard pipeline determines the variability of sufficiently bright sources through χ2 and fractional variability tests. Faint sources, however, are not automatically checked for variability, and this means that faint, short timescale transients are overlooked. From dedicated X-ray searches, as well as optical and radio archive searches, we know that some such dim sources can still be identified with high confidence. Aims. Our goal is to find new faint, fast transients in XMM-Newton EPIC-pn observations. To that end we created the EPIC-pn XMM-Newton outburst detector (EXOD) algorithm, which we run on the EPIC-pn full-frame data available in the 3XMM-DR8 catalogue. Methods. In EXOD, we computed the variability of the whole field of view by first binning in time the counts detected in each pixel of the detector. We next computed the difference between the median and maximal number of counts in each time bin and pixel to detect variability. We applied EXOD to 5751 observations in the full frame mode and compared the variability of the detected sources to the standard χ2 and Kolmogorov–Smirnov (KS) variability tests. Results. The algorithm is able to detect periodic and aperiodic variability, with both short and long flares. Of the sources detected by EXOD, 60−95% are also shown to be variable by the standard χ2 and KS tests. EXOD computes the variability over the entire field of view faster than the light curve generation takes for all the individual sources. We detect a total of 2961 X-ray variable sources. After removing the spurious detections, we obtain a net number of 2536 variable sources. Of these we investigate the nature of 35 sources with no previously confirmed classification. Amongst the new sources, we find stellar flares and AGNs, in addition to four extragalactic type I X-ray bursters that double the known neutron-star population in M 31. Conclusions. This algorithm is a powerful tool for the prompt detection of interesting variable sources in XMM-Newton observations. EXOD also detects fast transients that other variability tests would classify as non-variable due to their short duration and low number of counts. This is of increasing importance for the multi-messenger detection of transient sources. Finally, EXOD allows us to identify the nature of compact objects through their variability and to detect rare compact objects. We demonstrate this through the discovery of four extragalactic neutron-star low-mass X-ray binaries, doubling the number of known neutron stars in M 31.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3