Optimising and comparing source-extraction tools using objective segmentation quality criteria

Author:

Haigh Caroline,Chamba Nushkia,Venhola Aku,Peletier Reynier,Doorenbos Lars,Watkins Matthew,Wilkinson Michael H. F.

Abstract

Context. With the growth of the scale, depth, and resolution of astronomical imaging surveys, there is increased need for highly accurate automated detection and extraction of astronomical sources from images. This also means there is a need for objective quality criteria, and automated methods to optimise parameter settings for these software tools. Aims. We present a comparison of several tools developed to perform this task: namely SExtractor, ProFound, NoiseChisel, and MTObjects. In particular, we focus on evaluating performance in situations that present challenges for detection. For example, faint and diffuse galaxies; extended structures, such as streams; and objects close to bright sources. Furthermore, we develop an automated method to optimise the parameters for the above tools. Methods. We present four different objective segmentation quality measures, based on precision, recall, and a new measure for the correctly identified area of sources. Bayesian optimisation is used to find optimal parameter settings for each of the four tools when applied to simulated data, for which a ground truth is known. After training, the tools are tested on similar simulated data in order to provide a performance baseline. We then qualitatively assess tool performance on real astronomical images from two different surveys. Results. We determine that when area is disregarded, all four tools are capable of broadly similar levels of detection completeness, while only NoiseChisel and MTObjects are capable of locating the faint outskirts of objects. MTObjects achieves the highest scores on all tests for all four quality measures, whilst SExtractor obtains the highest speeds. No tool has sufficient speed and accuracy to be well suited to large-scale automated segmentation in its current form.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference58 articles.

1. The Dark Energy Survey: Data Release 1

2. The Fourth Data Release of the Sloan Digital Sky Survey

3. NOISE-BASED DETECTION AND SEGMENTATION OF NEBULOUS OBJECTS

4. Amiaux J., Scaramella R., Mellier Y., et al. 2012, in Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Int. Soc. Opt. Photon., 8442, 84420Z

5. Astropy: A community Python package for astronomy

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3