Deriving star cluster parameters with convolutional neural networks

Author:

Bialopetravičius J.,Narbutis D.

Abstract

Context. Convolutional neural networks (CNNs) have been established as the go-to method for fast object detection and classification of natural images. This opens the door for astrophysical parameter inference on the exponentially increasing amount of sky survey data. Until now, star cluster analysis was based on integral or resolved stellar photometry, which limit the amount of information that can be extracted from individual pixels of cluster images. Aims. We aim to create a CNN capable of inferring star cluster evolutionary, structural, and environmental parameters from multiband images and to demonstrate its capabilities in discriminating genuine clusters from galactic stellar backgrounds. Methods. A CNN based on the deep residual network (ResNet) architecture was created and trained to infer cluster ages, masses, sizes, and extinctions with respect to the degeneracies between them. Mock clusters placed on M 83 Hubble Space Telescope images utilizing three photometric passbands (F336W, F438W, and F814W) were used. The CNN is also capable of predicting the likelihood of the presence of a cluster in an image and quantifying its visibility (S/N). Results. The CNN was tested on mock images of artificial clusters and has demonstrated reliable inference results for clusters of ages ≲100 Myr, extinctions AV between 0 and 3 mag, masses between 3 × 103 and 3 × 105 M, and sizes between 0.04 and 0.4 arcsec at the distance of the M 83 galaxy. Real M 83 galaxy cluster parameter inference tests were performed with objects taken from previous studies and have demonstrated consistent results.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galaxy stellar and total mass estimation using machine learning;Monthly Notices of the Royal Astronomical Society;2024-02-07

2. Domain Adaptors for Hyperspectral Images;2022 26th International Conference on Pattern Recognition (ICPR);2022-08-21

3. Evaluating the feasibility of interpretable machine learning for globular cluster detection;Astronomy & Astrophysics;2022-07

4. Predicting images for the dynamics of stellar clusters (π-DOC): a deep learning framework to predict mass, distance, and age of globular clusters;Monthly Notices of the Royal Astronomical Society;2021-03-19

5. Study of Star Clusters in the M83 Galaxy with a Convolutional Neural Network;The Astronomical Journal;2020-11-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3