Realistic collisional water transport during terrestrial planet formation

Author:

Burger C.ORCID,Bazsó Á.,Schäfer C. M.

Abstract

Context. According to the latest theoretical and isotopic evidence, Earth’s water content originates mainly from today’s asteroid belt region, or at least from the same precursor material. This suggests that water was transported inwards to Earth, and to similar planets in their habitable zone, via (giant) collisions of planetary embryos and planetesimals during the chaotic final phase of planet formation. Aims. In current dynamical simulations water delivery to terrestrial planets is still studied almost exclusively by assuming oversimplified perfect merging, even though water and other volatiles are particularly prone to collisional transfer and loss. To close this gap we have developed a computational framework to model collisional water transport by direct combination of long-term N-body computations with dedicated 3D smooth particle hydrodynamics (SPH) collision simulations of differentiated, self-gravitating bodies for each event. Methods. Post-collision water inventories are traced self-consistently in the further dynamical evolution, in accretionary or erosive as well as hit-and-run encounters with two large surviving bodies, where besides collisional losses, water transfer between the encountering bodies has to be considered. This hybrid approach enables us for the first time to trace the full dynamical and collisional evolution of a system of approximately 200 bodies throughout the whole late-stage accretion phase (several hundred Myr). As a first application we choose a Solar System-like architecture with already formed giant planets on either circular or eccentric orbits and a debris disk spanning the whole terrestrial planet region (0.5–4 au). Results. Including realistic collision treatment leads to considerably different results than simple perfect merging, with lower mass planets and water inventories reduced regularly by a factor of two or more. Due to a combination of collisional losses and a considerably lengthened accretion phase, final water content, especially with giant planets on circular orbits, is strongly reduced to more Earth-like values, and closer to results with eccentric giant planets. Water delivery to potentially habitable planets is dominated by very few decisive collisions, mostly with embryo-sized or larger objects and only rarely with smaller bodies, at least if embryos have formed throughout the whole disk initially. The high frequency of hit-and-run collisions and the differences to predominantly accretionary encounters, such as generally low water (and mass) transfer efficiencies, are a crucial part of water delivery, and of system-wide evolution in general.

Funder

FWF Austrian Science Fund

bwHPC

German Research Foundation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3