Voracious vortices in cataclysmic variables

Author:

Neustroev V. V.ORCID,Zharikov S. V.

Abstract

Context. In Paper I we showed that the accretion disc radius of the dwarf nova HT Cas in its quiescent state has not changed significantly during many years of observations. It has remained consistently large, close to the tidal truncation radius. This result is inconsistent with the modern understanding of the evolution of the disc radius through an outburst cycle. Aims. Spectroscopic observations of HT Cas during its superoutburst offered us an exceptional opportunity to compare the properties of the disc of this object in superoutburst and in quiescence. Methods. We obtained a new set of time-resolved spectra of HT Cas in the middle of its 2017 superoutburst. We used Doppler tomography to map emission structures in the system, which we compared with those detected during the quiescent state. We used solutions of the restricted three-body problem to discuss again the location of emission structures and the disc size of HT Cas in quiescence. Results. The superoutburst spectrum is similar in appearance to the quiescent spectra, although the strength of most of the emission lines decreased. However, the high-excitation lines significantly strengthened in comparison with the Balmer lines. Many lines show a mix of broad emission and narrow absorption components. Hα in superoutburst was much narrower than in quiescence. Other emission lines have also narrowed in outburst, but they did not become as narrow as Hα. Doppler maps of Hα in quiescence and of the Hβ and He I lines in outburst are dominated by a bright emission arc at the right side of the tomograms, which is located at and even beyond the theoretical truncation limit. However, the bulk of the Hα emission in outburst has significantly lower velocities. Conclusions. We show that the accretion disc radius of HT Cas during its superoutburst has become hot but remained the same size as it was in quiescence. Instead, we detected cool gas beyond the Roche lobe of the white dwarf that may have been expelled from the hot disc during the superoutburst.

Funder

PAPIIT

FINCA, funded by the Academy of Finland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3