Could bow-shaped magnetic morphologies surround filamentary molecular clouds?

Author:

Tahani M.,Plume R.,Brown J. C.,Soler J. D.,Kainulainen J.

Abstract

Context. A new method based on Faraday rotation measurements recently found the line-of-sight component of magnetic fields in Orion-A and showed that their direction changes from the eastern side of this filamentary structure to its western side. Three possible magnetic field morphologies that can explain this reversal across the Orion-A region are toroidal, helical, and bow-shaped morphologies. Aims. In this paper, we constructed simple models to represent these three morphologies and compared them with the available observational data to find the most probable morphology(ies). Methods. We compared the observations with the models and used probability values and a Monte Carlo analysis to determine the most likely magnetic field morphology among these three morphologies. Results. We found that the bow morphology had the highest probability values, and that our Monte-Carlo analysis suggested that the bow morphology was more likely. Conclusions. We suggest that the bow morphology is the most likely and the most natural of the three morphologies that could explain a magnetic field reversal across the Orion-A filamentary structure (i.e., bow, helical and toroidal morphologies).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3