Protostellar Outflows at the EarliesT Stages (POETS)

Author:

Moscadelli L.,Sanna A.,Goddi C.,Krishnan V.,Massi F.,Bacciotti F.

Abstract

Context. Although recent observations and theoretical simulations have pointed out that accretion disks and jets can be essential for the formation of stars with a mass of up to at least 20 M, the processes regulating mass accretion and ejection are still uncertain. Aims. The goal of the Protostellar Outflows at the EarliesT Stages (POETS) survey is to image the disk-outflow interface on scales of 10–100 au in a statistically significant sample (36) of luminous young stellar objects (YSO), targeting both the molecular and ionized components of the outflows. Methods. The outflow kinematics is studied at milliarcsecond scales through very long baseline interferometry (VLBI) observations of the 22 GHz water masers, which are ideal test particles to measure the three-dimensional (3D) motion of shocks owing to the interaction of winds and jets with ambient gas. We employed the Jansky Very Large Array (JVLA) at 6, 13, and 22 GHz in the A- and B-Array configurations to determine the spatial structure and the spectral index of the radio continuum emission, and address its nature. Results. In about half of the targets, the water masers observed at separation ≤1000 au from the YSOs trace either or both of these kinematic structures: (1) a spatially elongated distribution oriented at close angle with the direction of collimation of the maser proper motions (PM), and (2) a linear local standard of rest (LSR) velocity (VLSR) gradient across the YSO position. The kinematic structure (1) is readily interpreted in terms of a protostellar jet, as confirmed in some targets via the comparison with independent observations of the YSO jets, in thermal (continuum and line) emissions, reported in the literature. The kinematic structure (2) is interpreted in terms of a disk-wind (DW) seen almost edge-on on the basis of several pieces of evidence: first, it is invariably directed perpendicular to the YSO jet; second, it agrees in orientation and polarity with the VLSR gradient in thermal emissions (when reported in the literature) identifying the YSO disk at scales of ≤1000 au; third, the PMs of the masers delineating the VLSR gradients hint at flow motions at a speed of 10–20 km s−1 directed at large angles with the disk midplane. In the remaining targets, the maser PMs are not collimated but rather tend to align along two almost perpendicular directions. To explain this peculiar PM distribution, and in light of the observational bias strongly favoring masers moving close to the plane of sky, we propose that, in these sources, the maser emission could originate in DW-jet systems slightly inclined (≤30°) with respect to edge-on. Magneto-centrifugally driven DWs could in general account for the observed velocity patterns of water masers.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference64 articles.

1. The theory of radiatively driven stellar winds. II - The line acceleration

2. Alexander R., Pascucci I., Andrews S., Armitage P., & Cieza L. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson, AZ: University of Arizona Press), 475

3. Arce H. G., Shepherd D., Gueth F., et al. 2007, Protostars and Planets V (Tucson, AZ: University of Arizona Press), 245

4. Hubble Space Telescope/STIS Spectroscopy of the Optical Outflow from DG Tauri: Indications for Rotation in the Initial Jet Channel

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maser flares driven by isothermal shock waves;Monthly Notices of the Royal Astronomical Society;2024-04-17

2. Radio Continuum and Water Maser Observations of the High-mass Protostar IRAS 19035+0641 A;The Astrophysical Journal;2024-02-01

3. Limits of water maser kinematics: insights from the high-mass protostar AFGL 5142-MM1;Monthly Notices of the Royal Astronomical Society;2023-12-23

4. State-of-the-art simulations of line-driven accretion disc winds: realistic radiation hydrodynamics leads to weaker outflows;Monthly Notices of the Royal Astronomical Society;2023-11-27

5. The MPIfR–MeerKAT Galactic Plane Survey – I. System set-up and early results;Monthly Notices of the Royal Astronomical Society;2023-06-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3