Hot subdwarf wind models with accurate abundances

Author:

Krtička J.,Janík J.,Krtičková I.,Mereghetti S.,Pintore F.,Németh P.,Kubát J.,Vučković M.

Abstract

Context. Hot subdwarfs are helium burning objects in late stages of their evolution. These subluminous stars can develop winds driven by light absorption in the lines of heavier elements. The wind strength depends on chemical composition which can significantly vary from star to star. Aims. We aim to understand the influence of metallicity on the strength of the winds of the hot hydrogen-rich subdwarfs HD 49798 and BD+18° 2647. Methods. We used high-resolution UV and optical spectra to derive stellar parameters and abundances using the TLUSTY and SYNSPEC codes. For derived stellar parameters, we predicted wind structure (including mass-loss rates and terminal velocities) with our METUJE code. Results. We derived effective temperature Teff = 45 900 K and mass M = 1.46 M for HD 49798 and Teff = 73 000 K and M = 0.38 M for BD+18° 2647. The derived surface abundances can be interpreted as a result of interplay between stellar evolution and diffusion. The subdwarf HD 49798 has a strong wind that does not allow for chemical separation and consequently the star shows solar chemical composition modified by hydrogen burning. On the other hand, we did not find any wind in BD+18° 2647 and its abundances are therefore most likely affected by radiative diffusion. Accurate abundances do not lead to a significant modification of wind mass-loss rate for HD 49798, because the increase of the contribution of iron and nickel to the radiative force is compensated by the decrease of the radiative force due to other elements. The resulting wind mass-loss rate = 2.1 × 10−9 M yr−1 predicts an X-ray light curve during the eclipse which closely agrees with observations. On the other hand, the absence of the wind in BD+18° 2647 for accurate abundances is a result of its peculiar chemical composition. Conclusions. Wind models with accurate abundances provide more reliable wind parameters, but the influence of abundances on the wind parameters is limited in many cases.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using relative field line helicity as an indicator for solar eruptivity;Astronomy & Astrophysics;2024-03

2. Hot subdwarf wind models with accurate abundances;Astronomy & Astrophysics;2024-03

3. Timing the X-ray pulsating companion of the hot subdwarf HD 49798 with NICER;Monthly Notices of the Royal Astronomical Society;2023-05-30

4. The X-ray emission of Be+stripped star binaries★;Monthly Notices of the Royal Astronomical Society;2022-08-18

5. X-ray pulsar HD 49798: a contracting white dwarf with a debris disk?;Astronomy & Astrophysics;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3