Supermassive black hole wake or bulgeless edge-on galaxy?

Author:

Sánchez Almeida J.ORCID

Abstract

Context. A recently discovered thin long object aligned with a nearby galaxy could be the stellar wake induced by the passage of a supermassive black hole (SMBH) kicked out from the nearby galaxy by the slingshot effect of a three-body encounter of SMBHs. Alternatively, the object could be a bulgeless edge-on galaxy coincidentally aligned with a second nearby companion. In contrast with the latter, the SMBH interpretation requires a number of unlikely events to happen simultaneously. Aims. We aim to assign a probability of occurrence to the two competing scenarios. Methods. The probability that the SMBH passage leaves a trace of stars is factorized as the product of the probabilities of all the independent events required for this to happen (PSMBH). Then, each factor is estimated individually. The same exercise is repeated with the edge-on galaxy interpretation (Pgalax). Results. Our estimate yields log(Pgalax/PSMBH)≃11.4 ± 1.6, where the error is evaluated considering that both Pgalax and PSMBH are products of a large number of random independent variables. Based on the estimated probabilities, PSMBH < 6 × 10−17 and Pgalax > 1.4 × 10−5, we determined the number of objects to be expected in various existing, ongoing, and forthcoming surveys, as well as among all observable galaxies (i.e., when observing between 106 and 2 × 1012 galaxies). In the edge-on galaxy scenario, there are always objects to be detected, whereas in the SMBH scenario, the expectation is always compatible with zero. Conclusions. Despite the appeal of the runaway SMBH explanation, arguments based on the Occam’s razor clearly favor the bulgeless edge-on galaxy interpretation. Our work does not rule out the existence of runaway SMBHs leaving stellar trails. It tells that the vD23 object is more likely to be a bulgeless edge-on galaxy.

Funder

Spanish Ministry of Science and Innovation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3