Small but mighty: High-resolution spectroscopy of ultra-hot Jupiter atmospheres with compact telescopes

Author:

Borsato N. W.ORCID,Hoeijmakers H. J.,Cont D.ORCID,Kitzmann D.ORCID,Ehrhardt J.,Gössl C.ORCID,Ries C.,Prinoth B.ORCID,Molaverdikhani K.,Ercolano B.,Kellerman H.,Heng Kevin

Abstract

When observing transmission spectra produced by the atmospheres of ultra-hot Jupiters (UHJs), large telescopes are typically the instrument of choice given the very weak signal of the planet’s atmopshere. The aim of the present study is to demonstrate that, for favourable targets, smaller telescopes are fully capable of conducting high-resolution cross-correlation spectroscopy. We apply the cross-correlation technique to data from the 2.1 m telescope at the Wendelstein Observatory, using its high-resolution spectrograph FOCES, in order to demonstrate its efficacy in resolving the atmosphere of the UHJ KELT-9 b. Using three nights of observations with the FOCES spectrograph and one with the HARPS-N spectrograph, we conduct a performance comparison between FOCES and HARPS-N. This comparison considers both single-transit and combined observations over the three nights. We then consider the potential of 2 m class telescopes by generalising our results to create a transit emulator capable of evaluating the potential of telescopes of this size. With FOCES, we detected seven species in the atmosphere of KELT-9b: Ti II, Fe I, Fe II, Na I, Mg I, Na II, Cr II, and Sc II. Although HARPS-N surpasses FOCES in performance thanks to the mirror of the TNG, our results reveal that smaller telescope classes are capable of resolving the atmospheres of UHJs given sufficient observing time. This broadens the potential scope of such studies, demonstrating that smaller telescopes can be used to investigate phenomena such as temporal variations in atmospheric signals and the atmospheric loss characteristics of these close-in planets.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3