A study of Io’s sodium jets with the TRAPPIST telescopes

Author:

De Becker A.,Head L. A.ORCID,Bonfond B.,Jehin E.,Manfroid J.,Yao Z.,Zhang B.,Grodent D.,Schneider N.,Benkhaldoun Z.

Abstract

Io is the most volcanically active body in the Solar System. This volcanic activity results in the ejection of material into Io’s atmosphere, which may then escape from the atmosphere to form various structures in the Jovian magnetosphere, including the plasma torus and clouds of neutral particles. The physical processes involved in the escape of particles – for example, how the volcanoes of Io provide material to the plasma torus – are not yet fully understood. In particular, it is not clear to what extent the sodium jet, one of the sodium neutral clouds related to Io, is a proxy of processes that populate the various reservoirs of plasma in Jupiter’s magnetosphere. Here, we report on observations carried out over 17 nights in 2014–2015, 30 nights in 2021, and 23 nights in 2022–2023 with the TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescopes, in which particular attention was paid to the sodium jet and the quantification of their physical properties (length and brightness). It was found that these properties can vary greatly from one jet to another and independently of the position of Io in its orbit. No clear link was found between the presence of jets and global brightening of the plasma torus and extended sodium nebula, indicating that jets do not contribute straightforwardly to their population. This work also demonstrates the advantage of regular and long-term monitoring in understanding the variability of the sodium jet and presents a large corpus of jet detections against which work in related fields may compare.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3