PRUSSIC

Author:

Rybak M.,van Marrewijk J.,Hodge J. A.,Andreani P.,Calistro Rivera G.,Graziani L.,McKean J. P.,Viti S.,van der Werf P. P.

Abstract

We present deep ALMA Band 3 observations of the HCN, HCO+, and HNC(4–3) emission in SDP.81, a well-studied z = 3.042, strongly lensed galaxy. These lines trace the high-density gas, which remains almost entirely unexplored in z ≥ 1 galaxies. Additionally, these dense-gas tracers are potentially powerful diagnostics of the mechanical heating of the interstellar medium. While the HCN(4–3) and HNC(4–3) lines are not detected, the HCO+(4–3) emission is clearly detected and resolved. This is the third detection of this line in a high-redshift star-forming galaxy. We find an unusually high HCO+/HCN intensity ratio of ≥2.2. Based on the modelling of the photodissociation region, the most likely explanation for the elevated HCO+/HCN ratio is that SDP.81 has low mechanical heating, making up less than 10% of the total energy budget, along with a sub-solar metallicity of Z ≈ 0.5 Z. While such conditions might not be representative of the general population of high-redshift dusty galaxies, a lower-than-solar metallicity might significantly impact gas masses inferred from CO observations. In addition, we report the detection of CO(0–1) absorption from the foreground lensing galaxy and CO(1–0) emission from a massive companion to the lensing galaxy, approximately 50 kpc to the south-east.

Funder

Dutch Research Council

European Research Council

National Research Foundation of South Africa

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metal factories in the early Universe;Monthly Notices of the Royal Astronomical Society;2024-06-27

2. SUNRISE: The rich molecular inventory of high-redshift dusty galaxies revealed by broadband spectral line surveys;Astronomy & Astrophysics;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3