New filamentary remnant radio emission and duty cycle constraints in the radio galaxy NGC 6086

Author:

Candini S.,Brienza M.,Bonafede A.,Rajpurohit K.,Biava N.,Murgia M.,Loi F.,van Weeren R. J.,Vazza F.

Abstract

Radio galaxies are a subclass of active galactic nuclei (AGN) in which accretion onto the supermassive black hole releases energy into the environment via relativistic jets. The jets are not constantly active throughout the life of the host galaxy and alternate between active and quiescent phases. Remnant radio galaxies are detected during a quiescent phase and define a class of unique sources that can be used to constrain the AGN duty cycle. We present, for the first time, a spatially resolved radio analysis of the radio galaxy associated with the galaxy NGC 6086 down to 144 MHz and constraints on the spectral age of the diffuse emission to investigate the duty cycle and evolution of the source. We used three new low-frequency, high-sensitivity observations; the first was performed with the Low Frequency Array at 144 MHz and the other two with the upgraded Giant Metrewave Radio Telescope at 400 MHz and 675 MHz, respectively. To these, we add two Very Large Array archival observations at higher frequencies (1400 and 4700 MHz). In the new observations in the frequency range 144–675 MHz, we detect a second pair of larger lobes and three regions within the remnant emission with a filamentary morphology. We analysed the spectral index trend in the inner remnant lobes and see systematically steeper values (αlow∼1.1–1.3) at the lower frequencies compared to the gigahertz frequencies (αhigh∼0.8–0.9). Steeper spectral indices are found in the newly detected outer lobes (up to αouter∼2.1), as expected if they trace a previous phase of activity of the AGN. However, the differences between the spectra of the two outer lobes suggest different dynamical evolutions within the intra-group medium during their expansion and/or different magnetic field values. Using a single-injection radiative model and assuming equipartition conditions, we place constraints on the age of the inner and outer lobes and derive the duty cycle of the source. We estimate that the duration of the two active phases was 45 Myr and 18 Myr and the duration of the two inactive phases was 66 Myr and 33 Myr. This results in a total active time of ton ∼ 39%. The filamentary structures have a steep spectral index (∼1) without any spectral index trend, and only one of them shows a steepening in the spectrum. Their origin is not yet clear, but they may have formed due to the compression of the plasma or due to magnetic field substructures.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3