Period bouncers as detached magnetic cataclysmic variables

Author:

Schreiber Matthias R.ORCID,Belloni DiogoORCID,van Roestel Jan

Abstract

Context. The general prediction that more than half of all cataclysmic variables (CVs) have evolved past the period minimum is in strong disagreement with observational surveys, which show that the relative number of these objects is just a few percent. Aims. Here, we investigate whether a large number of post-period minimum CVs could detach because of the appearance of a strong white dwarf magnetic field potentially generated by a rotation- and crystallization-driven dynamo. Methods. We used the MESA code to calculate evolutionary tracks of CVs incorporating the spin evolution and cooling as well as compressional heating of the white dwarf. If the conditions for the dynamo were met, we assumed that the emerging magnetic field of the white dwarf connects to that of the companion star and incorporated the corresponding synchronization torque, which transfers spin angular momentum to the orbit. Results. We find that for CVs with donor masses exceeding ∼0.04 M, magnetic fields are generated mostly if the white dwarfs start to crystallize before the onset of mass transfer. It is possible that a few white dwarf magnetic fields are generated in the period gap. For the remaining CVs, the conditions for the dynamo to work are met beyond the period minimum, when the accretion rate decreased significantly. Synchronization torques cause these systems to detach for several gigayears even if the magnetic field strength of the white dwarf is just one MG. Conclusions. If the rotation- and crystallization-driven dynamo – which is currently the only mechanism that can explain several observational facts related to magnetism in CVs and their progenitors – or a similar temperature-dependent mechanism is responsible for the generation of magnetic field in white dwarfs, most CVs that have evolved beyond the period minimum must detach for several gigayears at some point. This reduces the predicted number of semi-detached period bouncers by up to ∼60 − 80%.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3