Modelling of surface brightness fluctuation measurements

Author:

Rodríguez-Beltrán P.ORCID,Cerviño M.ORCID,Vazdekis A.ORCID,Beasley M. A.ORCID

Abstract

Aims. The goal of this work is to scrutinise the surface brightness fluctuation (SBF) calculation methodology. We analysed the SBF derivation procedure, measured the accuracy of the fitted SBF under controlled conditions, retrieved the uncertainty associated with the variability of a system that is inherently stochastic, and studied the SBF reliability under a wide range of conditions. Additionally, we address the possibility of an SBF gradient detection. We also examine the problems related with biased measurements of the SBF and low luminosity sources. All of this information allows us to put forward guidelines to ensure a valid SBF retrieval. Methods. To perform all the experiments described above, we carried out Monte Carlo simulations of mock galaxies as an ideal laboratory. Knowing its underlying properties, we attempted to retrieve SBFs under different conditions. The uncertainty was evaluated through the accuracy, the precision, and the standard deviation of the fitting. Results. We demonstrate how the usual mathematical approximations taken in the SBF theoretical derivation have a negligible impact on the results and how modelling the instrumental noise reduces the uncertainty. We conducted various studies where we varied the size of the mask applied over the image, the surface and fluctuation brightness of the galaxy, its size and profile, its point spread function, and the sky background. It is worth highlighting that we find a strong correlation between having a high number of pixels within the studied mask and retrieving a low uncertainty result. We address how the standard deviation of the fitting underestimates the actual uncertainty of the measurement. Lastly, we find that, when studying SBF gradients, the result is a pixel-weighted average of all the SBFs present within the studied region. Retrieving an SBF gradient requires high-quality data and a sufficient difference in the fluctuation value through the different radii. We show how the SBF uncertainty can be obtained and we present a collection of qualitative recommendations for a safe SBF retrieval. Conclusions. Our main findings are as follows. It is important to model the instrumental noise, rather than fitting it. The target galaxies must be observed under appropriate observational conditions. In a traditional SBF derivation, one should avoid pixels with fluxes lower than ten times the SBF estimate to prevent biased results. The uncertainty associated with the intrinsic variability of the system can be obtained using sets of Monte Carlo mock galaxy simulations. We offer our computational implementation in the form of a simple code designed to estimate the uncertainty of the SBF measurement. This code can be used to predict the quality of future observations or to evaluate the reliability of those already conducted.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3