Self-consistent modeling of metastable helium exoplanet transits

Author:

Biassoni Federico,Caldiroli Andrea,Gallo Elena,Haardt Francesco,Spinelli Riccardo,Borsa Francesco

Abstract

Absorption of stellar X-ray and extreme ultraviolet (EUV) radiation in the upper atmosphere of close-in exoplanets can give rise to hydrodynamic outflows, which may lead to the gradual shedding of their primordial light element envelopes. Excess absorption by neutral helium atoms in the metastable 2\,$^3$S state mhe at sim 10,830 A has recently emerged as a viable diagnostic of atmospheric escape. Here we present a public add-on module to the 1D photoionization hydrodynamic code ATES, designed to calculate the transmission probability for a broad range of planetary parameters. By relaxing the isothermal outflow assumption, the code enables a self-consistent assessment of the absorption depth along with the atmospheric mass-loss rate and the outflow temperature profile which strongly affects the recombination rate of into We investigate how the transit signal can be expected to depend upon known system parameters, including host spectral type, orbital distance, and planet gravity. At variance with previous studies, which identified K-type stars as favorable hosts, we conclude that late M dwarfs with Neptune-sized planets orbiting at sim 0.05-0.1 AU can be expected to yield the strongest transit signal, well in excess of 30<!PCT!> for near-cosmological He-to-H abundances. More generally, we show that the physics that regulates the population and depletion of the metastable state, combined with geometrical effects, can yield somewhat counterintuitive results, such as a nonmonotonic dependence of the transit depth on orbital distance. These are compounded by a strong degeneracy between the stellar EUV flux intensity and the atmospheric He-to-H abundance, both of which are highly uncertain. Compared with spectroscopy data, now available for over 40 systems, our modeling suggests either that a large fraction of the targets have helium-depleted envelopes or that the input stellar EUV spectra are systematically overestimated. The updated code and transmission probability module are available publicly as an online repository.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3