The first two-dimensional stellar structure and evolution models of rotating stars

Author:

Mombarg J. S. G.ORCID,Rieutord M.ORCID,Espinosa Lara F.ORCID

Abstract

Contact. Rotation is a key ingredient in the theory of stellar structure and evolution. Until now, stellar evolution codes operate in a one-dimensional framework for which the validity domain in regards to the rotation rate is not well understood. Aims. In this Letter, we present the first results of self-consistent stellar models in two spatial dimensions, which compute the time evolution of a star and its rotation rate along the main sequence (MS). We also present a comparison to observations. Methods. We make use of an extended version of the ESTER code, which solves the stellar structure of a rotating star in two dimensions with time evolution, including chemical evolution, and an implementation of rotational mixing. We computed evolution tracks for a 12 M model, once for an initial rotation rate equal to 15% of the critical frequency, and once for 50%. Results. We first show that our model initially rotating at 15% of the critical frequency is able to reproduce all the observations of the β Cephei star HD 192575, which was recently studied with asteroseismology. Beyond the classical surface parameters, such as effective temperature or luminosity, our model also reproduces the core mass along with the rotation rate of the core and envelope at the estimated age of the star. This particular model also shows that the meridional circulation has a negligible influence on the transport of chemical elements such as nitrogen, for which the abundance may be increased at the stellar surface. Furthermore, it shows that in the late MS, nuclear evolution is faster than the relaxation time needed to reach a steady state of stellar angular momentum distribution. Conclusions. We demonstrate that we have successfully taken a new step towards two-dimensional evolutionary modelling of rotating stars. This opens new perspectives on the understanding of the dynamics of fast rotating stars and on the way rotation impacts stellar evolution.

Funder

French Agence Nationale de la Recherche

CALMIP supercomputing center

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Combined Effects of Vertical and Horizontal Shear Instabilities in Stellar Radiative Zones;The Astrophysical Journal;2024-01-29

2. Making waves in massive star asteroseismology;Astrophysics and Space Science;2023-12

3. Asteroseismic g-mode period spacings in strongly magnetic rotating stars;Monthly Notices of the Royal Astronomical Society;2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3