Cracking the puzzle of CO2 formation on interstellar ices

Author:

Molpeceres G.ORCID,Enrique-Romero J.ORCID,Aikawa Y.ORCID

Abstract

Context. Carbon dioxide (CO2) is one of the dominant components of interstellar ices. Recent observations show CO2 exists more abundantly in polar (H2O-dominated) ice than in apolar (H2O-poor) ice. Formation of CO2 ice is primarily attributed to the reaction between CO and OH, which has a barrier. Aims. We investigate the title reaction in H2O ice and CO ice to quantify the efficiency of the reaction in polar ice and apolar ice. Methods. Highly accurate quantum chemical calculations were employed to analyze the stationary points of the potential energy surfaces of the title reaction in the gas phase on H2O and CO clusters. Microcanonical transition state theory was used as a diagnostic tool for the efficiency of the reaction under interstellar medium conditions. We simulated the kinetics of ice chemistry, considering different scenarios involving non-thermal processes and energy dissipation. Results. The CO + OH reaction proceeds through the remarkably stable intermediate HOCO radical. On the H2O cluster, the formation of this intermediate is efficient, but the subsequent reaction leading to CO2 formation is not. Conversely, HOCO formation on the CO cluster is inefficient without external energy input. Thus, CO2 ice cannot be formed by the title reaction alone either on an H2O cluster or a CO cluster. Conclusions. In the polar ice, CO2 ice formation is possible via CO + OH → HOCO followed by HOCO + H → CO2 + H2, as demonstrated by abundant experimental literature. In apolar ice, CO2 formation is less efficient because HOCO formation requires external energy. Our finding is consistent with the JWST observations. Further experimental work using low-temperature OH radicals is encouraged.

Funder

Japan Society for the Promotion of Science

Research Center for Computational Science

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3