Metal-silicate mixing in planetesimal collisions

Author:

Shuai KangORCID,Schäfer Christoph M.ORCID,Burger Christoph,Hui HejiuORCID

Abstract

Aims. Impacts between differentiated planetesimals are ubiquitous in protoplanetary discs and may mix materials from the core, mantle, and crust of planetesimals, thus forming stony-iron meteorites. The surface composition of the asteroid (16) Psyche represents a mixture of metal and non-metal components. However, the velocities, angles, and outcome regimes of impacts that mixed metal and silicate from different layers of planetesimals are debated. Our aim is to investigate the impacts between planetesimals that can mix large amounts of metal and silicate, and the mechanism of stony-iron meteorite formation. Methods. We used smooth particle hydrodynamics to simulate the impacts between differentiated planetesimals with various initial conditions that span different outcome regimes. In our simulations, the material strength was included and the effects of the states of planetesimal cores were studied. Using a statistical approach, we quantitatively analysed the distributions of metal and silicate after impacts. Results. Our simulations modelled the mass, depth, and sources of the metal–silicate mixture in different impact conditions. Our results suggest that the molten cores in planetesimals could facilitate mixing of metal and silicate. Large amounts of the metal–silicate mixture could be produced by low-energy accretional impacts and high-energy erosive impacts in the largest impact remnant, and by hit-and-run and erosive impacts in the second-largest impact remnant. After impact, most of the metal-silicate mixture was buried at depth, consistent with the low cooling rates of stony-iron meteorites. Our results indicate that mesosiderites potentially formed in an erosive impact, while pallasites potentially formed in an accretional or hit-and-run impact. The mixing of metal and non-metal components on Psyche may also be the result of impacts.

Funder

National natural science foundation of china

Chinese Academy of Sciences

German Research Foundation

China Scholarship Council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3