At the end of cosmic noon: Short gas depletion times in unobscured quasars at z ∼ 1

Author:

Frias Castillo M.,Rybak M.ORCID,Hodge J.ORCID,van der Werf P.ORCID,Abbo L. J.ORCID,Ballieux F. J.ORCID,Ward S.ORCID,Harrison C.ORCID,Calistro Rivera G.ORCID,McKean J. P.,Stacey H. R.ORCID

Abstract

Unobscured quasars (QSOs) are predicted to be the final stage in the evolutionary sequence from gas–rich mergers to gas–depleted, quenched galaxies. Studies of this population, however, find a high incidence of far–infrared–luminous sources–suggesting significant dust-obscured star formation–but direct observations of the cold molecular gas fuelling this star formation are still necessary. We present a NOEMA study of CO(2–1) emission, tracing the cold molecular gas, in ten lensed z = 1 − 1.5 unobscured QSOs. We detected CO(2–1) in seven of our targets, four of which also show continuum emission (λrest = 1.3 mm). After subtracting the foreground galaxy contribution to the photometry, spectral energy distribution fitting yielded stellar masses of 109 − 11M, with star formation rates of 25−160 M yr−1 for the host galaxies. These QSOs have lower LCO than star–forming galaxies with the same LIR, and show depletion times spanning a large range (50−900 Myr), but with a median of just 90(αCO/4) Myr. We find molecular gas masses in the range ≤2−40 × 109(αCO/4) M, which suggest gas fractions above ∼50% for most of the targets. Despite the presence of an unobscured QSO, the host galaxies are able to retain significant amounts of cold gas. However, with a median depletion time of ∼90 Myr, the intense burst of star formation taking place in these targets will quickly deplete their molecular gas reservoirs in the absence of gas replenishment, resulting in a quiescent host galaxy. The non–detected QSOs are three of the four radio–loud QSOs in the sample, and their properties indicate that they are likely already transitioning into quiescence. Recent cosmological simulations tend to overestimate the depletion times expected for these z ∼ 1 QSO–host galaxies, which is likely linked to their difficulty producing starbursts across the general high-redshift galaxy population.

Funder

United Kingdom Research and Innovation

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

NWO VIDI

ERC Consolidator Grant

Deutsche Forschungsgemeinschaft

National Research Foundation of South Africa

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HYPERION;Astronomy & Astrophysics;2024-09

2. AGN-driven outflows in clumpy media: multiphase structure and scaling relations;Monthly Notices of the Royal Astronomical Society;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3