Luminous giants populate the dense Cosmic Web

Author:

Oei Martijn S. S. L.ORCID,van Weeren Reinout J.ORCID,Hardcastle Martin J.ORCID,Gast Aivin R. D. J. G. I. B.ORCID,Leclercq FlorentORCID,Röttgering Huub J. A.ORCID,Dabhade PratikORCID,Shimwell Tim W.ORCID,Botteon AndreaORCID

Abstract

Context. Giant radio galaxies (GRGs, giant RGs, or giants) are megaparsec-scale, jet-driven outflows from accretion disks of supermassive black holes, and represent the most extreme pathway by which galaxies can impact the Cosmic Web around them. A long-standing but unresolved question is why giants are so much larger than other radio galaxies. Aims. It has been proposed that, in addition to having higher jet powers than most RGs, giants might live in especially low-density Cosmic Web environments. In this work, we aim to test this hypothesis by pinpointing Local Universe giants and other RGs in physically principled, Bayesian large-scale structure reconstructions. Methods. More specifically, we localised a LOFAR Two-metre Sky Survey (LoTSS) DR2–dominated sample of luminous (lν(ν = 150 MHz)≥1024 W Hz−1) giants and a control sample of LoTSS DR1 RGs, both with spectroscopic redshifts up to zmax = 0.16, in the BORG SDSS Cosmic Web reconstructions. We measured the Cosmic Web density on a smoothing scale of ∼2.9 Mpc h−1 for each RG; for the control sample, we then quantified the relation between RG radio luminosity and Cosmic Web density. With the BORG SDSS tidal tensor, we also measured for each RG whether the gravitational dynamics of its Cosmic Web environment resemble those of clusters, filaments, sheets, or voids. Results. For both luminous giants and general RGs, the Cosmic Web density distribution is gamma distribution–like. Luminous giants populate large-scale environments that tend to be denser than those of general RGs. This result is corroborated by gravitational dynamics classification and a cluster catalogue crossmatching analysis. We find that the Cosmic Web density around RGs with 150 MHz radio luminosity lν is distributed as 1 + ΔRG | Lν = lν ∼ Γ(k, θ), where k = 4.8 + 0.2 · √, θ = 1.4 + 0.02 · √, and √:= log10(lν (1023 W Hz−1)−1). Conclusions. This work presents more than a thousand inferred megaparsec-scale densities around radio galaxies, which may be correct up to a factor of order unity – except in clusters of galaxies, where the densities can be more than an order of magnitude too low. We pave the way to a future in which megaparsec-scale densities around RGs are common inferred quantities, which help to better understand their dynamics, morphology, and interaction with the enveloping Cosmic Web. Our data demonstrate that luminous giants inhabit denser environments than general RGs. This shows that – at least at high jet powers – low-density environments are no prerequisite for giant growth. Using general RGs, we quantified the relation between radio luminosity at 150 MHz and Cosmic Web density on a smoothing scale of ∼2.9 Mpc h−1. This positive relation, combined with the discrepancy in radio luminosity between known giants and general RGs, reproduces the discrepancy in Cosmic Web density between known giants and general RGs. Our findings are consistent with the view that giants are regular, rather than mechanistically special, members of the radio galaxy population.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3