Combining astrometry and JUICE – Europa Clipper radio science to improve the ephemerides of the Galilean moons

Author:

Fayolle M.ORCID,Magnanini A.,Lainey V.ORCID,Dirkx D.ORCID,Zannoni M.ORCID,Tortora P.ORCID

Abstract

Context. The upcoming JUICE and Europa Clipper missions targeting Jupiter’s Galilean satellites will provide radio science tracking measurements of both spacecraft. Such data are expected to significantly help estimating the moons’ ephemerides and related dynamical parameters (e.g. tidal dissipation parameters). However, the two missions will yield an imbalanced dataset, with no flybys planned at Io, condensed over less than six years. Current ephemerides’ solutions for the Galilean moons, on the other hand, rely on ground-based astrometry collected over more than a century which, while being less accurate, bring very valuable constraints on the long-term dynamics of the system. Aims. An improved solution for the Galilean satellites’ complex dynamics could however be achieved by exploiting the existing synergies between these different observation sets. Methods. To quantify this, we merged simulated radio science data from both JUICE and Europa Clipper spacecraft with existing ground-based astrometric and radar observations, and performed the inversion in different configurations: either adding all available ground observations or individually assessing the contribution of different data subsets. Our discussion specifically focusses on the resulting formal uncertainties in the moons’ states, as well as Io’s and Jupiter’s tidal dissipation parameters. Results. Adding astrometry stabilises the moons’ state solution, especially beyond the missions’ timelines. It furthermore reduces the uncertainties in 1/Q (inverse of the tidal quality factor) by a factor two to four for Jupiter, and about 30–35% for Io. Among all data types, classical astrometry data prior to 1960 proved particularly beneficial. Overall, we also show that ground observations of Io add the most to the solution, confirming that ground observations can fill the lack of radio science data for this specific moon. Conclusions. We obtained a noticeable solution improvement when making use of the complementarity between all different observation sets. The promising results obtained with simulations thus motivate future efforts to achieve a global solution from actual JUICE and Clipper radio science measurements.

Funder

European Space Agency

Italian Space Agency

CNES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3