Exploring the brown dwarf desert with precision radial velocities and Gaia DR3 astrometric orbits

Author:

Unger N.ORCID,Ségransan D.,Barbato D.,Delisle J.-B.,Sahlmann J.,Holl B.,Udry S.

Abstract

Context. The observed scarcity of brown dwarfs in close orbits (within 10 au) around solar-type stars has posed significant questions about the origins of these substellar companions. These questions not only pertain to brown dwarfs but also impact our broader understanding of planetary formation processes. However, to resolve these formation mechanisms, accurate observational constraints are essential. Notably, most of the brown dwarfs have been discovered by radial velocity surveys, but this method introduces uncertainties due to its inability to determine the orbital inclination, leaving the true mass – and thus their true nature – unresolved. This highlights the crucial role of astrometric data, helping us distinguish between genuine brown dwarfs and stars. Aims. This study aims to refine the mass estimates of massive companions to solar-type stars, mostly discovered through radial velocity measurements and subsequently validated using Gαìα DR3 astrometry, to gain a clearer understanding of their true mass and occurrence rates. Methods. We selected a sample of 31 sources with substellar companion candidates validated by Gaia Data Release (DR3) and with available radial velocities. Using the Gaia DR3 solutions as prior information, we performed an MCMC fit with the available radial velocity measurements to integrate these two sources of data and thus obtain an estimate of their true mass. Results. Combining radial velocity measurements with Gaia DR3 data led to more precise mass estimations, leading us to reclassify several systems initially labeled as brown dwarfs as low-mass stars. Out of the 32 analyzed companions, 13 have been determined to be stars, 17 are substellar, and two have inconclusive results with the current data. Importantly, using these updated masses, we reevaluated the occurrence rate of brown dwarf companions (13–80 MJup) on close orbits (<10 au) in the CORALIE sample, determining a tentative occurrence rate of 0.8−0.2+0.3%.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3