Deep learning forecasts of cosmic acceleration parameters from DECi-hertz Interferometer Gravitational-wave Observatory

Author:

Sun Mengfei,Li Jin,Cao Shuo,Liu Xiaolin

Abstract

Validating the accelerating expansion of the universe is an important aspect in improving our understanding of the evolution of the universe. By constraining the cosmic acceleration parameter $X_H$, we can discriminate between the cosmological constant plus cold dark matter ($ CDM $) model and the Lemaître-Tolman-Bondi (LTB) model. In this paper, we explore the possibility of constraining the cosmic acceleration parameter with the inspiral gravitational waveform of neutron star binaries (NSBs) in the frequency range of 0.1Hz-10Hz, which can be detected by the second-generation space-based gravitational wave detector DECIGO. We used a convolutional neural network (CNN) and a long short-term memory (LSTM) network combined with a gated recurrent unit (GRU), along with a Fisher information matrix to derive constraints on the cosmic acceleration parameter, $X_H$. We assumed that our networks estimate the cosmic acceleration parameter without biases (the expected value of the estimation is equal to the true value). Under this assumption, based on the simulated gravitational wave data with a time duration of one month, we conclude that CNN can limit the relative error to 15.71<!PCT!>, while LSTM network combined with GRU can limit the relative error to 14.14<!PCT!>. Additionally, using a Fisher information matrix for gravitational wave data with a five-year observation can limit the relative error to 32.94<!PCT!>. Under the assumption of an unbiased estimation, the neural networks can offer a high-precision estimation of the cosmic acceleration parameter at different redshifts. Therefore, DECIGO is expected to provide direct measurements of the acceleration of the universe by observing the chirp signals of coalescing binary neutron stars.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3