The first high-redshift cavity power measurements of cool-core galaxy clusters with the International LOFAR Telescope

Author:

Timmerman R.ORCID,van Weeren R. J.ORCID,Botteon A.ORCID,Röttgering H. J. A.,Morabito L. K.,Sweijen F.

Abstract

Radio-mode feedback associated with the active galactic nuclei (AGNs) at the cores of galaxy clusters injects a large amount of energy into the intracluster medium (ICM), offsetting radiative losses through X-ray emission. This mechanism prevents the ICM from rapidly cooling down and fueling extreme starburst activity as it accretes onto the central galaxies, and it is therefore a key ingredient in the evolution of galaxy clusters. However, the influence and mode of feedback at high redshifts (z ∼ 1) remains largely unknown. Low-frequency sub-arcsecond-resolution radio observations taken with the International LOFAR Telescope have demonstrated their ability to assist X-ray observations with constraining the energy output from the AGNs (or “cavity power”) in galaxy clusters, thereby enabling research at higher redshifts than before. In this pilot project, we tested this hybrid method on a high-redshift (0.6 < z < 1.3) sample of 13 galaxy clusters for the first time with the aim of verifying the performance of this method at these redshifts and providing the first estimates of the cavity power associated with the central AGN for a sample of distant clusters. We were able to detect clear radio lobes in three out of 13 galaxy clusters at redshifts of 0.7 < z < 0.9, and we used these detections in combination with ICM pressures surrounding the radio lobes obtained from standard profiles to calculate the corresponding cavity powers of the AGNs. Combining our results with the literature, the current data appear to suggest that the average cavity power peaked at a redshift of z ∼ 0.4 and slowly decreases toward higher redshifts. However, we require more and tighter constraints on the cavity volume and a better understanding of our observational systematics to confirm any deviation of the cavity power trend from a constant level.

Funder

European Research Council

European Union

Medical Research Council

SURF

EGI-ACE

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3