The torsion of stellar streams and the overall shape of galactic gravity’s source

Author:

Bariego-Quintana AdrianaORCID,Llanes-Estrada Felipe J.ORCID

Abstract

Context. Flat rotation curves, v(r), are naturally explained by elongated (prolate) dark matter (DM) distributions, and we have provided competitive fits to the SPARC database. To further probe the geometry of the halo, or the equivalent source of gravity in other formulations, one needs observables outside the galactic plane. Stellar streams, poetically analogous to airplane contrails, but caused by tidal dispersion of massive substructures such as satellite dwarf galaxies, would lie on their own plane (consistently with angular momentum conservation) should the DM-halo gravitational field be spherically symmetric. Tracks resembling entire orbits are seldom available because their periods are commensurable with Hubble time, with streams often presenting themselves as short segments. Aims. Therefore, we aim to establish stellar stream torsion, a local observable that measures the deviation from planarity in differential curve geometry, as a diagnostic providing sensitivity to aspherical DM distributions and ensuring the use of even relatively short streams. Methods. We performed small-scale simulations of tidally distorted star clusters to check that indeed a central force center produces negligible torsion, while distorted halos can generate it. Turning to observational data, we identified among the known streams those that are at the largest distance from the Galactic center, and that are likely not affected by the Magellanic clouds, as the most promising for the study, and by means of polynomial fits we extracted their differential torsion. Results. We find that the torsion of the few known streams that should be sensitive to most of the Milky Way’s DM halo is much larger than expected for a central spherical bulb alone. This is consistent with the nonsphericity of the halo. Conclusions. Future studies of stellar stream torsion with larger samples and further out of the galactic plane should be able to extract the ellipticity of the halo to see whether it is just a slight distortion of a spherical shape or whether it rather resembles a more elongated cigar.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3