The Galactic bulge exploration

Author:

Prudil Z.ORCID,Smolec R.ORCID,Kunder A.ORCID,Koch-Hansen A. JORCID,Dékány I.

Abstract

We present a new set of tools to derive systemic velocities for single-mode RR Lyrae stars from visual and near-infrared spectra. We derived scaling relations and line-of-sight velocity templates using both APOGEE and Gaia spectroscopic products combined with photometric G-band amplitudes. We provide a means to estimate systemic velocities for the RR Lyrae subclasses, RRab and RRc. Our analysis indicates that the scaling relation between the photometric and line-of-sight velocity amplitudes is nonlinear, with a break in a linear relation occurring around ≈0.4 mag in both the V-band and G-band amplitudes. We did not observe such a break in the relation for the first-overtone pulsators. Using stellar pulsation models, we further confirm and examine the nonlinearity in scaling relation for the RRab subclass. We observed little to no variation with stellar parameters (mass, metallicity, and luminosity) in the scaling relation between the photometric and line-of-sight velocity amplitudes for fundamental-mode pulsators. We observed an offset in the scaling relation between the observations and stellar pulsation models, mainly in the low-amplitude RR Lyrae regime. This offset disappears when different sets of convective parameters are used. Thus, the Fourier amplitudes obtained from the photometry and line-of-sight velocity measurements can be utilized to constrain convective parameters of stellar pulsation models. The scaling relations and templates for APOGEE and Gaia data accurately predict systemic velocities compared to literature values. In addition, our tools derived from the Gaia spectra improve the precision of the derived systemic velocities by approximately 50 percent and provide a better description of the uncertainty distribution in comparison with previous studies. Our newly derived tools will be used for RR Lyrae variables observed toward the Galactic bulge.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3