The dusty heart of Circinus

Author:

Isbell J. W.ORCID,Pott J.-U.,Meisenheimer K.,Stalevski M.,Tristram K. R. W.,Leftley J.,Asmus D.,Weigelt G.,Gámez Rosas V.,Petrov R.,Jaffe W.,Hofmann K.-H.,Henning T.,Lopez B.

Abstract

In this paper we present the first-ever L- and M-band interferometric observations of Circinus, building upon a recent N-band analysis. We used these observations to reconstruct images and fit Gaussian models to the L and M bands. Our findings reveal a thin edge-on disk whose width is marginally resolved and is the spectral continuation of the disk imaged in the N band to shorter wavelengths. Additionally, we find a point-like source in the L and M bands that, based on the LMN-band spectral energy distribution fit, corresponds to the N-band point source. We also demonstrate that there is no trace of direct sightlines to hot dust surfaces in the circumnuclear dust structure of Circinus. By assuming the dust is present, we find that obscuration of AV ≳ 250 mag is necessary to reproduce the measured fluxes. Hence, the imaged disk could play the role of the obscuring “torus” in the unified scheme of active galactic nuclei. Furthermore, we explored the parameter space of the disk + hyperbolic cone radiative transfer models and identify a simple modification at the base of the cone. Adding a cluster of clumps just above the disk and inside the base of the hyperbolic cone provides a much better match to the observed temperature distribution in the central aperture. This aligns well with the radiation-driven fountain models that have recently emerged. Only the unique combination of sensitivity and spatial resolution of the VLTI allows such models to be scrutinized and constrained in detail. We plan to test the applicability of this detailed dust structure to other MATISSE-observed active galactic nuclei in the future.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3