Simulating small-scale dynamo action in cool main-sequence stars

Author:

Riva FabioORCID,Steiner OskarORCID,Freytag BerndORCID

Abstract

Context. The origin of the ubiquitous small-scale magnetic field observed on the solar surface can be attributed to the presence of a small-scale dynamo (SSD) operating in the sub-surface layers of the Sun. It is expected that a similar process could self-sustain a considerable amount of magnetic energy also in the near-surface layers of cool main-sequence stars other than the Sun. Aims. In this paper the properties of the magnetic field resulting from SSD action operating in the near-surface layers of four cool main-sequence stars and its self-organization into magnetic flux concentrations are investigated numerically. Methods. Three-dimensional radiative magnetohydrodynamic simulations of SSD action in the near-surface layers of four cool main-sequence stars of spectral types K8V, K2V, G2V, and F5V are carried out with the CO5BOLD code. The simulations are set up to have approximately the same Reynolds and magnetic Reynolds numbers, and to disentangle the impact of the effective temperature and the surface gravity on the SSD action from numerical effects. Results. It is found that the SSD growth rates in SI units differ for the four stellar models; the highest and lowest growth rate is for the K2V and F5V model, respectively. This is due to the different turnover times in the four simulations. Even so, the SSD field strengths reached in the saturation phases are similar in all models, with the same amount of kinetic energy converted into magnetic energy. If the magnetic energy that is pumped out from the computational domain across the bottom boundary is partially replenished from outside of the computational domain, we find that the SSD action leads to a sufficient reduction in the convective velocities to reduce the convective horizontal length scales in the convection zone by 5–10%, vanishing towards the optical depth unity level. In this case, strong kilogauss magnetic flux concentrations emerge at the surface, leading to magnetic bright features, which are more numerous and conspicuous for the K2V and G2V models than for the K8V and F5V models. Their vertical magnetic field component on the surface of optical depth unity increases from 1 kG to 1.6 kG with decreasing effective temperature from F5V to K8V. However, more than 90% of the magnetic flux through any of these stellar surfaces has a field strength of less than 1 kG.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

EDP Sciences

Reference54 articles.

1. Beeck B., Schüssler M., & Reiners A. 2011, 16th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, eds. Johns-Krull C. M., Browning M. K., & West A. A. (San Francisco: Astronomical Society of the Pacific), ASP Conf. Ser., 448, 1071

2. Three-dimensional simulations of near-surface convection in main-sequence stars

3. Three-dimensional simulations of near-surface convection in main-sequence stars

4. Starspots: A Key to the Stellar Dynamo

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3