The ultra-long GRB 220627A at z = 3.08

Author:

de Wet S.,Izzo L.,Groot P. J.,Bisero S.,D’Elia V.,De Pasquale M.,Hartmann D. H.,Heintz K. E.,Jakobsson P.,Laskar T.,Levan A.,Martin-Carrillo A.,Melandri A.,Nicuesa Guelbenzu A.,Pugliese G.,Rossi A.,Saccardi A.,Savaglio S.,Schady P.,Tanvir N. R.,van Eerten H.,Vergani S. D.

Abstract

Context. GRB 220627A is a rare burst with two distinct γ-ray emission episodes separated by almost 1000 s that triggered the Fermi Gamma-ray Burst Monitor twice. High-energy GeV emission was detected by the Fermi Large Area Telescope coincident with the first emission episode but not the second. The discovery of the optical afterglow with MeerLICHT led to MUSE observations which secured the burst redshift to z = 3.08, making this the most distant ultra-long gamma-ray burst (GRB) detected to date. Aims. The progenitors of some ultra-long GRBs have been suggested in the literature to be different to those of normal long GRBs. Our aim is to determine whether the afterglow and host properties of GRB 220627A agree with this interpretation. Methods. We performed empirical and theoretical modelling of the afterglow data within the external forward shock framework, and determined the metallicity of the GRB environment through modelling the absorption lines in the MUSE spectrum. Results. Our optical data show evidence for a jet break in the light curve at ∼1.2 days, while our theoretical modelling shows a preference for a homogeneous circumburst medium. Our forward shock parameters are typical for the wider GRB population, and we find that the environment of the burst is characterised by a sub-solar metallicity. Conclusions. Our observations and modelling of GRB 220627A do not suggest that a different progenitor compared to the progenitor of normal long GRBs is required. We find that more observations of ultra-long GRBs are needed to determine if they form a separate population with distinct prompt and afterglow features, and possibly distinct progenitors.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3