Energetic particle activity in AD Leo: Detection of a solar-like type-IV burst

Author:

Mohan AtulORCID,Mondal SurajitORCID,Wedemeyer SvenORCID,Gopalswamy NatchimuthukORCID

Abstract

Context. AD Leo is a young and active M dwarf with high flaring rates across the X-ray-to-radio bands. Flares accelerate particles in the outer coronal layers and often impact exo-space weather. Wide-band radio dynamic spectra let us explore the evolution of particle acceleration activity across the corona. Identifying the emission features and modelling the mechanisms can provide insights into the possible physical scenarios driving the particle acceleration processes. Aims. We performed an 8 h monitoring of AD Leo across the 550-850 MHz band using upgraded-Giant Metrewave Radio Telescope (uGMRT). The possible flare and post-flare emission mechanisms are explored based on the evolution of flux density and polarisation. Methods. The python-based module, Visibility Averaged Dynamic spectrum (VISAD), was developed to obtain the visibility-averaged wide-band dynamic spectra. Direct imaging was also performed with different frequency-time averaging. Based on existing observational results on AD Leo and on solar active region models, radial profiles of electron density and magnetic fields were derived. Applying these models, we explored the possible emission mechanisms and magnetic field profile of the flaring active region. Results. The star displayed a high brightness temperature (TB≈ 1010−1011 K) throughout the observation. The emission was also nearly 100% left circularly polarised during bursts. The post-flare phase was characterised by a highly polarised (60–80%) solar-like type IV burst confined above 700 MHz. Conclusions. The flare emission favours a Z-mode or a higher harmonic X-mode electron cyclotron maser emission mechanism. The >700 MHz post-flare activity is consistent with a type-IV radio burst from flare-accelerated particles trapped in magnetic loops, which could be a coronal mass ejection (CME) signature. This is the first solar-like type-IV burst reported on a young active M dwarf belonging to a different age-related activity population (‘C’ branch) compared to the Sun (‘I’ branch). We also find that a multipole expansion model of the active region magnetic field better accounts for the observed radio emission than a solar-like active region profile.

Funder

Research Council of Norway

NASA STEREO

NASA LWS

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3