New ACV variables discovered in the Zwicky Transient Facility survey

Author:

Bauer-Fasching B.,Bernhard K.ORCID,Brändli E.,Burger H.,Eisele B.,Hümmerich S.ORCID,Neuhold J.,Paunzen E.ORCID,Piecka M.,Ratzenböck S.ORCID,Prišegen M.

Abstract

Context. The manifestation of surface spots on magnetic chemically peculiar (mCP) stars is most commonly explained by the atomic diffusion theory, which requires a calm stellar atmosphere and only moderate rotation. While very successful and well described, this theory still needs to be revised and fine-tuned to the observations. Aims. Our study aims to enlarge the sample of known photometrically variable mCP stars (ACV variables) to pave the way for more robust and significant statistical studies. We derive accurate physical parameters for these objects and discuss our results in the framework of the atomic diffusion theory. Methods. We studied 1314 candidate ACV variables that were selected from the Zwicky Transient Factory catalogue of periodic variables based on light curve characteristics. We investigated these objects using photometric criteria, a colour-magnitude diagram, and spectroscopic data from the LAMOST and Gaia missions to confirm their status as ACV variables. Results. We present a sample of 1232 new ACV variables, including information on distance from the Sun, mass, fractional age on the main sequence, fraction of the radius between the zero-age and terminal-age main sequence, and the equatorial velocity and its ratio to the critical velocity. Conclusions. Our results confirm that the employed selection process is highly efficient for detecting ACV variables. We have identified 38 stars with vequ in excess of 150 km s−1 (with extreme values up to 260 km s−1). This challenges current theories that cannot explain the occurrence of such fast-rotating mCP stars.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3