Galactoseismology in cosmological simulations: Vertical perturbations by dark matter, satellite galaxies, and gas

Author:

García-Conde B.,Antoja T.,Roca-Fàbrega S.,Gómez F.,Ramos P.,Garavito-Camargo N.,Gómez-Flechoso MA.

Abstract

Complex models recently became available for studying the dynamics of disk galaxies such as the Milky Way (MW). These models include the global dynamics from dwarf satellite galaxies, dark matter halo structure, gas infall, and stellar disks in a cosmological context. We use a MW model from a suite of high-resolution hydrodynamical cosmological simulations named GARROTXA to establish the relationship between the vertical disturbances seen in its galactic disk and multiple perturbations from the dark matter halo, satellites, and gas. We calculated the bending modes in the galactic disk in the last 6 Gyr of evolution. We computed the vertical acceleration exerted by dark matter and gas in order to quantify the impact of these components on the disk, and compared this with the bending behavior with Fourier analysis. We find complex bending patterns at different radii and times, such as an inner retrograde mode with high frequency and an outer slower retrograde mode excited at different times. The amplitudes of these bending modes are highest during the early stages of formation of the thin disk (20 km s$^ $) and reach up to 8.5 km s$^ $ in the late disk evolution. We find that the infall of satellite galaxies leads to a tilt of the disk, and produces strong anisotropic gas accretion with a misalignment of 8$^ circ $ with subsequent star formation events and supernovae, creating significant vertical accelerations on the disk plane. The misalignment between the disk and the inner stellar and dark matter triaxial structure, which formed during the ancient assembly of the galaxy, also leads to a strong vertical acceleration of the stars. We also find dark matter subhalos that temporally coincide with the appearance of bending waves in certain periods. We conclude that several agents trigger the bending of the stellar disk and its phase spirals in this simulation, including satellite galaxies, dark subhalos, misaligned gaseous structures, and the inner dark matter profile. These phenomena coexist and influence each other, sometimes making it challenging to establish direct causality.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Warps induced by satellites on barred and non-barred galaxies;Monthly Notices of the Royal Astronomical Society;2024-08-21

2. Galactic structure from binary pulsar accelerations: Beyond smooth models;Physical Review D;2024-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3