PENELLOPE

Author:

Armeni A.,Stelzer B.,Claes R. A. B.,Manara C. F.,Frasca A.,Alcalá J. M.,Walter F. M.,Kóspál Á.,Campbell-White J.,Gangi M.,Mauco K.,Tychoniec L.

Abstract

HM Lup is a young M-type star that accretes material from a circumstellar disk through a magnetosphere. Our aim is to study the inner disk structure of HM Lup and to characterize its variability. We used spectroscopic data from HST/STIS, X-shooter, and ESPRESSO taken in the framework of the ULLYSES and PENELLOPE programs, together with photometric data from TESS and AAVSO. The 2021 TESS light curve shows variability typical for young stellar objects of the “accretion burster” type. The spectra cover the temporal evolution of the main burst in the 2021 TESS light curve. We compared the strength and morphology of emission lines from different species and ionization stages. We determined the mass accretion rate from selected emission lines and from the UV continuum excess emission at different epochs, and we examined its relation to the photometric light curves. The emission lines in the optical spectrum of HM Lup delineate a temperature stratification along the accretion flow. While the wings of the H I and He I lines originate near the star, the lines of species such as Na I, Mg I, Ca I, Ca II, Fe I, and Fe II are formed in an outer and colder region. The shape and periodicity of the 2019 and 2021 TESS light curves, when qualitatively compared to predictions from magnetohydrodynamic models, suggest that HM Lup was in a regime of unstable ordered accretion during the 2021 TESS observation due to an increase in the accretion rate. Although HM Lup is not an extreme accretor, it shows enhanced emission in the metallic species during this high accretion state that is produced by a density enhancement in the outer part of the accretion flow.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3