Abstract
We used simulated cluster member galaxies from the TNG300-1 run of the IllustrisTNG simulations to develop a technique for measuring the galaxy cluster mass accretion rate (MAR) that can be applied directly to observations. We analyzed 1318 IllustrisTNG clusters of galaxies with M200c > 1014 M⊙ and 0.01 ≤ z ≤ 1.04. The MAR we derived is the ratio between the mass of a spherical shell located in the infall region and the time for the infalling shell to accrete onto the virialized region of the cluster. At fixed redshift, an approximately one order of magnitude increase in M200c results in a comparable increase in MAR. At fixed mass, the MAR increases by a factor of approximately five from z = 0.01 to z = 1.04. The MAR estimates derived from the caustic technique are unbiased and lie within 20% of the MARs based on the true mass profiles. This agreement is crucial for observational derivation of the MAR. The IllustrisTNG results are also consistent with (i) previous merger tree approaches based on N-body dark matter only simulations and with (ii) previously determined MARs of real clusters based on the caustic method. Future spectroscopic and photometric surveys will provide MARs of enormous cluster samples with mass profiles derived from both spectroscopy and weak lensing. Combined with future larger volume hydrodynamical simulations that extend to higher redshift, the MAR promises important insights into the evolution of massive systems of galaxies.
Funder
Canada Research Chair Program and the Natural Sciences and Engineering Research Council of Canada
The Smithsonian Institution
Italian National Institute of Nuclear Physics
University of Torino
Subject
Space and Planetary Science,Astronomy and Astrophysics
Reference95 articles.
1. Computation of the halo mass function using physical collapse parameters: application to non-standard cosmologies
2. Splashback in accreting dark matter halos
3. The shape of dark matter haloes: dependence on mass, redshift, radius and formation
4. Pre-processing, group accretion, and the orbital trajectories of associated subhaloes
5. Balcells M., Benn C. R., Carter D., et al. 2010, in Ground-based and Airborne Instrumentation for Astronomy III, eds. McLean I. S., Ramsay S. K., & Takami H., SPIE Conf. Ser., 7735, 77357G
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献