Origin of the broadband emission from the transition blazar B2 1308+326

Author:

Pandey AshwaniORCID,Kushwaha PankajORCID,Wiita Paul J.ORCID,Prince RajORCID,Czerny BożenaORCID,Stalin C. S.ORCID

Abstract

Context. Transition blazars exhibit a shift from one subclass to the next during different flux states. It is therefore crucial to study them to understand the underlying physics of blazars. Aims. We probe the origin of the multi-wavelength emission from the transition blazar B2 1308+326 using the ∼14-year long γ-ray light curve from Fermi and the quasi-simultaneous data from Swift. Methods. We used the Bayesian block algorithm to identify epochs of flaring and quiescent flux states and modelled the broadband spectral energy distributions (SEDs) for these epochs. We employed the one-zone leptonic model in which the synchrotron emission causes the low-energy part of the SED and the high-energy part is produced by the inverse-Compton (IC) emission of external seed photons. We also investigated its multi-band variability properties and γ-ray flux distribution, and the correlation between optical and γ-ray emissions. Results. We observed a historically bright flare from B2 1308+326 across the optical to γ-ray bands in June and July 2022. The highest daily averaged γ-ray flux was (14.24 ± 2.36) × 10−7 ph cm−2 s−1 and was detected on 1 July 2022. For the entire period, the observed variability amplitude was higher at low (optical/UV) energies than at high (X-ray/γ-ray) energies. The γ-ray flux distribution was found to be log-normal. The optical and γ-ray emissions are well correlated with zero time lag. The synchrotron peak frequency changes from ∼8 × 1012 Hz (in the quiescent state) to ∼6 × 1014 Hz (in the flaring state), together with a decrease in the Compton dominance (the ratio of IC to the synchrotron peak luminosities), providing a hint that the source transitions from a low-synchrotron peaked blazar (LSP) to an intermediate-synchrotron peaked blazar (ISP). The SEDs for these two states are well fitted by one-zone leptonic models. The parameters in the model fits are essentially consistent between both SEDs, except for the Doppler-beaming factor, which changes from ∼15.6 to ∼27 during the transition. Conclusions. An increase in the Doppler factor might cause both the flare and the transition of B2 1308+326 from an LSP to an ISP blazar.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3