Flares in open clusters with K2

Author:

Ilin EkaterinaORCID,Schmidt Sarah J.,Poppenhäger KatjaORCID,Davenport James R. A.,Kristiansen Martti H.ORCID,Omohundro Mark

Abstract

Context. Magnetic fields are a key component in the main sequence evolution of low mass stars. Flares, energetic eruptions on the surfaces of stars, are an unmistakable manifestation of magnetically driven emission. The occurrence rates and energy distributions of flares trace stellar characteristics such as mass and age. However, before flares can be used to constrain stellar properties, the flaring-age-mass relation requires proper calibration. Aims. This work sets out to quantify the flaring activity of independently age-dated main sequence stars for a broad range of spectral types using optical light curves obtained by the Kepler satellite. Methods. Drawing from the complete K2 archive, we searched 3435 ∼80 day long light curves of 2111 open cluster members for flares using the open-source software packages K2SC to remove instrumental and astrophysical variability from K2 light curves, and AltaiPony to search and characterize the flare candidates. Results. We confirmed a total of 3844 flares on high probability open cluster members with ages from zero age main sequence (Pleiades) to 3.6 Gyr (M 67). We extended the mass range probed in the first study of this series to span from Sun-like stars to mid-M dwarfs. We added the Hyades (690 Myr) to the sample as a comparison cluster to Praesepe (750 Myr), the 2.6 Gyr old Ruprecht 147, and several hundred light curves from the late K2 Campaigns in the remaining clusters. We found that the flare energy distribution was similar in the entire parameter space, following a power law relation with exponent α ≈ 1.84−2.39. Conclusions. We confirm that flaring rates decline with age, and decline faster for higher mass stars. Our results are in good agreement with most previous statistical flare studies. We find evidence that a rapid decline in flaring activity occurred in M1–M2 dwarfs around the ages of the Hyades and Praesepe, when these stars spun down to rotation periods of about 10 d, while higher mass stars had already transitioned to lower flaring rates and lower mass stars still resided in the saturated activity regime. We conclude that some discrepancies between our results and flare studies that used rotation periods for their age estimates could be explained by sample selection bias toward more active stars, but others may point to the limitations of using rotation as an age indicator without additional constraints from stellar activity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3