Axisymmetric investigation of differential rotation in contracting stellar radiative zones

Author:

Gouhier B.,Lignières F.,Jouve L.

Abstract

Context. Stars experience rapid contraction or expansion at different phases of their evolution. Modelling the transport of angular momentum and the transport of chemical elements occurring during these phases remains an unsolved problem. Aims. We study a stellar radiative zone undergoing radial contraction and investigate the induced differential rotation and meridional circulation. Methods. We consider a rotating spherical layer crossed by an imposed radial velocity field that mimics the contraction, and numerically solve the axisymmetric hydrodynamical equations in both the Boussinesq and anelastic approximations. An extensive parametric study is conducted to cover regimes of contraction, rotation, stable stratification, and density stratification that are relevant for stars. Results. The differential rotation and the meridional circulation result from a competition between the contraction-driven inward transport of angular momentum and an outward transport dominated by either viscosity or an Eddington–Sweet-type circulation, depending on the value of the Pr(N00)2 parameter, where Pr is the Prandtl number, N0 the Brunt–Väisäilä frequency, and Ω0 the rotation rate. Taking the density stratification into account is important to study more realistic radial contraction fields, and also because the resulting flow is less affected by unwanted effects of the boundary conditions. In these different regimes and for a weak differential rotation we derive scaling laws that relate the amplitude of the differential rotation to the contraction timescale.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3