Relativistic fluid modelling of gamma-ray binaries

Author:

Huber D.ORCID,Kissmann R.ORCID,Reimer O.ORCID

Abstract

Context. In the first paper of this series, we presented a numerical model for the non-thermal emission of gamma-ray binaries in a pulsar-wind-driven scenario. Aims. We apply this model to one of the best-observed gamma-ray binaries, the LS 5039 system. Methods. The model involves a joint simulation of the interaction between the pulsar wind and the stellar wind and the transport of electron pairs from the pulsar wind accelerated at the emerging shock structure. We compute the synchrotron and inverse Compton emission in a post-processing step while consistently accounting for relativistic beaming and γγ-absorption in the stellar radiation field. Results. The wind interaction leads to the formation of an extended, asymmetric wind collision region that develops strong shocks, turbulent mixing, and secondary shocks in the turbulent flow. Both the structure of the collision region and the resulting particle distributions show significant orbital variation. In addition to the acceleration of particles at the bow-like pulsar wind and the Coriolis shock, the model naturally accounts for the re-acceleration of particles at secondary shocks that contribute to the emission at very-high-energy (VHE) gamma-rays. The model successfully reproduces the main spectral features of LS 5039. While the predicted light curves in the high-energy and VHE gamma-ray band are in good agreement with observations, our model still does not reproduce the X-ray to low-energy gamma-ray modulation, which we attribute to the employed magnetic field model. Conclusions. We successfully model the main spectral features of the observed multi-band, non-thermal emission of LS 5039 and thus further substantiate a wind-driven interpretation of gamma ray binaries. Open issues relate to the synchrotron modulation, which might be addressed through a magnetohydrodynamic extension of our model.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FCBench: Cross-Domain Benchmarking of Lossless Compression for Floating-Point Data;Proceedings of the VLDB Endowment;2024-02

2. Probing Orbital Parameters of Gamma-Ray Binaries with TeV Light Curves;The Astrophysical Journal;2023-12-01

3. High-resolution simulations of LS 5039;Astronomy & Astrophysics;2023-08-24

4. Achromatic rapid flares in hard X-rays in the γ-ray binary LS I + 61 303;Monthly Notices of the Royal Astronomical Society;2023-08-03

5. AMP: Total Variation Reduction for Lossless Compression via Approximate Median-based Preconditioning;ACM Transactions on Embedded Computing Systems;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3