Orbital solutions derived from radial velocities and time delays for four Kepler systems with A/F-type (candidate) hybrid pulsators

Author:

Lampens P.ORCID,Vermeylen L.,Frémat Y.ORCID,Sódor Á.ORCID,Skarka M.,Samadi-Ghadim A.ORCID,Bognár Zs.,Lehmann H.,De Cat P.ORCID,Goswami A.,Dumortier L.

Abstract

Context. The presence of A/F-type Kepler hybrid stars extending across the entirety of the δ Scuti – γ Doradus instability strips and beyond remains largely unexplained. In order to better understand these particular stars, we performed a multi-epoch spectroscopic study of a sample of 49 candidate A/F-type hybrid stars and one cool(er) hybrid object detected by the Kepler mission. We determined a lower limit of 27% for the multiplicity fraction. For six spectroscopic systems, we also reported long-term variations in the time delays (TDs). For four systems, the TD variations are fully coherent with those of the radial velocities (RVs ) and can be attributed to orbital motion. Aims. We aim to improve the orbital solutions for those spectroscopic systems with long orbital periods (order of 4–6 years) among the Kepler hybrid stars that we continued to observe. Methods. The orbits are computed based on a simultaneous modelling of the RVs obtained with high-resolution spectrographs and the photometric TDs derived from time-dependent frequency analyses of the Kepler light curves. Results. We refined the orbital solutions of four spectroscopic systems with A/F-type Kepler hybrid component stars: KIC 4480321, 5219533, 8975515, and KIC 9775454. Simultaneous modelling of both data types analysed together enabled us to improve the orbital solutions (all), obtain more robust and accurate information on the mass ratio (some for the first time), and identify the component with the short-period δ Sct-type pulsations (all). The information gained is maximized when one of the components, generally the one exhibiting the δ Sct-type pulsations, is a fast rotator. In several cases, we were also able to derive new constraints for the minimum component masses. From a search for regular frequency patterns in the high-frequency regime of the Fourier transforms of each system, we found no evidence of tidal splitting among the triple systems with close (inner) companions. However, some systems exhibit frequency spacings that can be explained by the mechanism of rotational splitting.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulsation in TESS Objects of Interest;The Astrophysical Journal;2024-01-01

2. A search for magnetic δ Scuti stars in Kepler hybrid candidates;Monthly Notices of the Royal Astronomical Society;2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3