Peering into the extended X-ray emission on megaparsec scale in 3C 187

Author:

Paggi A.ORCID,Massaro F.ORCID,Peña-Herazo H. A.ORCID,Missaglia V.ORCID,Ricci F.ORCID,Stuardi C.ORCID,Kraft R. P.ORCID,Tremblay G. R.ORCID,Baum S. A.,Wilkes B. J.ORCID

Abstract

Context. The diffuse X-ray emission surrounding radio galaxies is generally interpreted either as due to inverse Compton scattering of nonthermal radio-emitting electrons on the cosmic microwave background (IC/CMB), or as due to thermal emission arising from the hot gas of the intergalactic medium (IGM) permeating galaxy clusters hosting such galaxies, or as a combination of both. In this work, we present an imaging and spectral analysis of Chandra observations for the radio galaxy 3C 187 to investigate its diffuse X-ray emission and constrain the contribution of these various physical mechanisms. Aims. The main goals of this work are the following: (i) to evaluate the extension of the diffuse X-ray emission from this source; (ii) to investigate the two main processes, IC/CMB and thermal emission from the IGM, which can account for the origin of this emission; and (iii) to test the possibility that 3C 187 belongs to a cluster of galaxies, which can account for the observed diffuse X-ray emission. Methods. To evaluate the extension of the X-ray emission around 3C 187, we extracted surface flux profiles along and across the radio axis. We also extracted X-ray spectra in the region of the radio lobes and in the cross-cone region to estimate the contribution of the nonthermal (IC/CMB) and thermal (IGM) processes to the observed emission, making use of radio (VLA and GMRT) data to investigate the multiwavelength emission arising from the lobes. We collected Pan-STARRS photometric data to investigate the presence of a galaxy cluster hosting 3C 187, looking for the presence of a “red sequence” in the source field in the form of a tight clustering of galaxies in the color space. In addition, we made use of observations performed with the COSMOS spectrograph at the Victor Blanco Telescope to estimate the redshift of the sources in the field of 3C 187 to verify if they are gravitationally bound, as we would expect in a cluster of galaxies. Results. The diffuse X-ray emission around 3C 187 is found to extend in the soft 0.3 − 3 keV band up to ∼850 kpc along the radio lobe direction and ∼530 kpc in the cross-cone direction, and it appears enhanced in correspondence with the radio lobes. Spectral X-ray analysis in the cross-cones indicates a thermal origin for the emission in this region with a temperature ∼4 keV. In the radio lobes, the X-ray spectral analysis in combination with the radio data suggests a dominant IC/CMB radiation in these regions, however we do not rule out a significant thermal contribution. Assuming that the radiation observed in the radio lobes is due to the IGM, the emission from the N and S cones can be interpreted as arising from hot gas with temperatures of ∼3 keV and ∼5 keV, respectively, and found to be in pressure equilibrium with the surrounding gas. Using Pan-STARRS optical data we found that 3C 187 belongs to a red sequence of ∼40 optical sources in the field whose color distribution is significantly different from background sources. We were able to collect optical spectra for only one of these cluster candidates and for 22 field (i.e., noncluster candidates) sources. While the latter show stellar spectra, the former feature a galactic spectrum with a redshift close to 3C 187 nucleus. Conclusions. The diffuse X-ray emission around 3C 187 is elongated along the radio axis and enhanced in correspondence with the radio lobes. This indicates a morphological connection between the emission in the two energy bands and thus suggests a dominating IC/CMB mechanism in these regions. This scenario is reinforced by multiwavelength radio X-ray emission, which in these regions is compatible with IC/CMB radiation. The X-ray spectral analysis however does not rule out a significant contribution to the observed emission from thermal gas, which would be able to emit over tens of gigayears and in pressure equilibrium with the surroundings. Optical data indicate that 3C 187 may belong to a cluster of galaxies, whose IGM would contribute to the X-ray emission observed around the source. Additional X-ray and optical spectroscopic observations are however needed to secure these results and get a more clear picture of the physical processes at play in 3C 187.

Funder

Italian Ministry of Education, University and Research

Compagnia di San Paolo

NASA

Consorzio Interuniversitario per la Fisica Spaziale

ASI-INAF

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Multiwavelength Environment of Second Bologna Catalog Sources;The Astrophysical Journal Supplement Series;2023-09-01

2. High-frequency Radio Imaging of 3CR 403.1 with the Sardinia Radio Telescope;The Astrophysical Journal;2022-08-25

3. Hidden Treasures in the Unknown 3CR Extragalactic Radio Sky: A Multiwavelength Approach;The Astrophysical Journal Supplement Series;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3