Constraining the intrinsic population of long gamma-ray bursts: Implications for spectral correlations, cosmic evolution, and their use as tracers of star formation

Author:

Palmerio J. T.,Daigne F.

Abstract

Aims. Long gamma-ray bursts (LGRBs) have been shown to be powerful probes of the Universe, in particular for studying the star formation rate up to very high redshift (z ∼ 9). Since LGRBs are produced by only a small fraction of massive stars, it is paramount to have a good understanding of their underlying intrinsic population in order to use them as cosmological probes without introducing any unwanted bias. The goal of this work is to constrain and characterise this intrinsic population. Methods. We developed a Monte Carlo model where each burst is described by its redshift and its properties at the peak of the light curve. We derived the best fit parameters by comparing our synthetic populations to carefully selected observational constraints based on the CGRO/BATSE, Fermi/GBM and Swift/BAT samples with appropriate flux thresholds. We explored different scenarios in terms of the cosmic evolution of the luminosity function and/or of the redshift distribution as well as including or not the presence of intrinsic spectral-energetics (Ep − L) correlations. Results. We find that the existence of an intrinsic Ep − L correlation is preferred but with a shallower slope than observed (αA ∼ 0.3) and a larger scatter (∼0.4 dex). We find a strong degeneracy between the cosmic evolution of the luminosity and of the LGRB rate, and show that a sample both larger and deeper than SHOALS by a factor of three is needed to lift this degeneracy. Conclusions. The observed Ep − L correlation cannot be explained only by selection effects although these do play a role in shaping the observed relation. The degeneracy between the cosmic evolution of the luminosity function and of the redshift distribution of LGRBs should be included in the uncertainties of star formation rate estimates; these amount to a factor of 10 at z = 6 and up to a factor of 50 at z = 9.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3