Irradiation dose affects the composition of organic refractory materials in space

Author:

Urso R. G.ORCID,Vuitton V.,Danger G.,Le Sergeant d’Hendecourt L.,Flandinet L.,Djouadi Z.,Mivumbi O.,Orthous-Daunay F. R.,Ruf A.,Vinogradoff V.,Wolters C.,Brunetto R.

Abstract

Context. Near- and mid-infrared observations have revealed the presence of organic refractory materials in the Solar System, in cometary nuclei and on the surface of centaurs, Kuiper-belt and trans-neptunian objects. In these astrophysical environments, organic materials can be formed because of the interaction of frozen volatile compounds with cosmic rays and solar particles, and favoured by thermal processing. The analysis of laboratory analogues of such materials gives information on their properties, complementary to observations. Aims. We present new experiments to contribute to the understanding of the chemical composition of organic refractory materials in space. Methods. We bombard frozen water, methanol and ammonia mixtures with 40 keV H+ and we warmed the by-products up to 300 K. The experiments enabled the production of organic residues that we analysed by means of infrared spectroscopy and by very high resolution mass spectrometry to study their chemical composition and their high molecular diversity, including the presence of hexamethylenetetramine and its derivatives. Results. We find that the accumulated irradiation dose plays a role in determining the composition of the residue. Conclusions. Based on the laboratory doses, we estimate the astrophysical timescales to be short enough to induce an efficient formation of organic refractory materials at the surface of icy bodies in the outer Solar System.

Funder

P2IO LabEx

RAHIIA SSOM

Origin of Life

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3