Photodissociation branching ratios of 12C16O from 110 500 to 113 045 cm−1: first observation of the C(1S) channel

Author:

Guan Lichang,Jiang Pan,Zhang Guodong,Yin Tonghui,Cheng Min,Gao Hong

Abstract

Carbon monoxide (CO) is one of the most abundant molecular species in comets. Its photodissociation by the solar radiation in the vacuum ultraviolet (VUV) region produces excited atomic fragments C(1D), C(1S), and O(1D), which radiate at characteristic wavelengths when they decay to lower states. The fractional rate constants for generating these fragments from CO photodissociation under the entire range of the solar radiation field are key input values in modelling the observed atomic emission intensities from comets. In this study, the branching ratios of the four lowest dissociation channels C(3P)+O(3P), C(1D)+O(3P), C(3P)+O(1D), and C(1S)+O(3P) of the 12C16O photodissociation are measured in the VUV energy range between the threshold of producing the C(1S)+O(3P) channel (~110 500 cm−1) and the ionisation energy (IE) of 12C16O (~113 045 cm−1). We measured these ratios using the VUV time-slice velocity-map ion imaging apparatus. We observe a number of high Rydberg states in the aforementioned energy range, with most of them mainly producing ground C(3P) and O(3P) atomic fragments, and only a few of them producing a significant amount of excited C(1D) or O(1D) fragments. We also observe the excited C(1S) fragment from CO photodissociation and measured its branching ratio for the first time. Based on the photodissociation branching ratios measured in the current and previous studies, we are able to estimate the relative percentages of the excited atomic fragments C(1D), C(1S), and O(1D) from the solar photolysis of 12C16O below its IE. We discuss the implications for the photochemical modelling of the CO-dominated comet C/2016 R2 (Pan-STARRS).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3