Matter accretion in metal-poor stars down to extremely metal-poor stars and the lithium problem

Author:

Deal M.,Richard O.,Vauclair S.

Abstract

Context. The formation and evolution of light elements in the Universe act as important cosmological constraints. It has long been assumed that the oldest stars of the Galaxy display the primordial lithium abundance in their outer layers, although studies of stellar physics have proven that this abundance must have decreased with time. The primordial Li abundance deduced from the observations of the cosmic background is, indeed, larger than the maximum observed in these stars. Recent observations have given evidence of a large Li abundance dispersion in very metal-poor stars. Many of these stars are carbon-rich, that is, the so-called carbon-enhanced metal-poor (CEMP) stars. A large number of them also present overabundances of s process elements (CEMP-s). Aims. We address the general question of the observed abundances in metal-poor stars and we focus our study on the case of CEMP-s stars. We study how the accretion of the wind of stellar companions, especially asymptotic giant branch stars, modifies the element abundances of metal-poor stars and, in particular, lithium, taking into account the stellar structure and the hydrodynamic processes that take place after accretion. We compare the results with the observations of lithium and heavier elements in these old stars on the main sequence. Methods. We use the Montréal/Montpellier stellar evolution code, which includes atomic diffusion and thermohaline convection, to compute the internal structure of the proto-CEMP-s stars and their evolution, from [Fe/H] = −2.31 down to [Fe/H] = −5.45. We study a number of cases that vary according to the masses of the stars, their ages, metallicities, and the distances to their respective companions. Results. We show that the observations of lithium dispersion that is associated (or not) with carbon enrichment are well accounted for in terms of accretion on to the metal-poor stars of the winds of stellar companions, with accreted masses smaller than those considered in previous studies. The derived primordial value is in accordance with the cosmological results.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3