Evidence for limited compositional and particle size variation on asteroid (101955) Bennu from thermal infrared spectroscopy

Author:

Hamilton V. E.ORCID,Christensen P. R.,Kaplan H. H.,Haberle C. W.,Rogers A. D.,Glotch T. D.,Breitenfeld L. B.,Goodrich C. A.,Schrader D. L.,McCoy T. J.,Lantz C.,Hanna R. D.,Simon A. A.,Brucato J. R.,Clark B. E.,Lauretta D. S.

Abstract

Context. Asteroid (101955) Bennu is the target of NASA’s Origins, Spectral Interpretation, Resource Identification, and Security–Regolith Explorer (OSIRIS-REx) mission. The spacecraft’s instruments have characterized Bennu at global and local scales to select a sampling site and provide context for the sample that will be returned to Earth. These observations include thermal infrared spectral characterization by the OSIRIS-REx Thermal Emission Spectrometer (OTES). Aims. To understand the degree of compositional and particle size variation on Bennu, and thereby predict the nature of the returned sample, we studied OTES spectra, which are diagnostic of these properties. Methods. We created and mapped spectral indices and compared them with the distribution of geomorphic features. Comparison to laboratory spectra of aqueously altered carbonaceous chondrites constrains the amount of compositional variability that is observable. Results. The OTES spectra exhibit two end-member shapes (or types), and compositional variability appears limited at the spatial resolution of the observations. The global distribution of these spectral types corresponds with the locations of regions composed of (i) large, dark, relatively rough boulders and (ii) relatively smooth regions lacking large boulders. Conclusions. The two spectral types appear to be diagnostic primarily of particle size variations, with contributions from other properties. The spectra resemble experimental data of solid substrates with very thin accumulations (a few to tens of microns) of fine particles (<~65–100 μm). The dustier surfaces commonly correspond with rougher rocks that may produce and/or act as traps for the particles. Anhydrous silicates are limited in abundance, and the bulk mineralogy is consistent with the most aqueously altered carbonaceous chondrites. We expect the returned samples to include these physical and mineralogical characteristics.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3