The relation between Lyα absorbers and local galaxy filaments

Author:

Bouma S. J. D.,Richter P.,Wendt M.

Abstract

Context. The intergalactic medium (IGM) is believed to contain the majority of baryons in the universe and to trace the same dark matter structure as galaxies, forming filaments and sheets. Lyα absorbers, which sample the neutral component of the IGM, have been extensively studied at low and high redshift, but the exact relation between Lyα absorption, galaxies, and the large-scale structure is observationally not well constrained. Aims. In this study, we aim at characterising the relation between Lyα absorbers and nearby over-dense cosmological structures (galaxy filaments) at recession velocities Δv ≤ 6700 km s−1 by using archival observational data from various instruments. Methods. We analyse 587 intervening Lyα absorbers in the spectra of 302 extragalactic background sources obtained with the Cosmic Origins Spectrograph (COS) installed on the Hubble Space Telescope (HST). We combine the absorption line information with galaxy data of five local galaxy filaments from the V8k catalogue. Results. Along the 91 sightlines that pass close to a filament, we identify 215 (227) Lyα absorption systems (components). Among these, 74 Lyα systems are aligned in position and velocity with the galaxy filaments, indicating that these absorbers and the galaxies trace the same large-scale structure. The filament-aligned Lyα absorbers have a ∼90% higher rate of incidence (d𝒩/dz = 189 for log N(H I) ≥ 13.2) and a slightly shallower column density distribution function slope (−β = −1.47) relative to the general Lyα population at z = 0, reflecting the filaments’ matter over-density. The strongest Lyα absorbers are preferentially found near galaxies or close to the axis of a filament, although there is substantial scatter in this relation. Our sample of absorbers clusters more strongly around filament axes than a randomly distributed sample would do (as confirmed by a Kolmogorov–Smirnov test), but the clustering signal is less pronounced than for the galaxies in the filaments.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3