Plasma densities, flow, and solar EUV flux at comet 67P

Author:

Johansson F. L.ORCID,Eriksson A. I.,Vigren E.ORCID,Bucciantini L.ORCID,Henri P.ORCID,Nilsson H.,Bergman S.ORCID,Edberg N. J. T.,Stenberg Wieser G.ORCID,Odelstad E.ORCID

Abstract

Context. During its two-year mission at comet 67P, Rosetta nearly continuously monitored the inner coma plasma environment for gas production rates varying over three orders of magnitude, at distances to the nucleus ranging from a few to a few hundred kilometres. To achieve the best possible measurements, cross-calibration of the plasma instruments is needed. Aims. Our goal is to provide a consistent plasma density dataset for the full mission, while in the process providing a statistical characterisation of the plasma in the inner coma and its evolution. Methods. We constructed physical models for two different methods to cross-calibrate the spacecraft potential and the ion current as measured by the Rosetta Langmuir probes (LAP) to the electron density as measured by the Mutual Impedance Probe (MIP). We also described the methods used to estimate spacecraft potential, and validated the results with the Ion Composition Analyser (ICA). Results. We retrieve a continuous plasma density dataset for the entire cometary mission with a much improved dynamical range compared to any plasma instrument alone and, at times, improve the temporal resolution from 0.24−0.74 Hz to 57.8 Hz. The physical model also yields, at a three-hour time resolution, ion flow speeds and a proxy for the solar EUV flux from the photoemission from the Langmuir probes. Conclusions. We report on two independent mission-wide estimates of the ion flow speed that are consistent with the bulk H2O+ ion velocities as measured by the ICA. We find the ion flow to consistently be much faster than the neutral gas over the entire mission, lending further evidence that the ions are collisionally decoupled from the neutrals in the coma. Measurements of ion speeds from Rosetta are therefore not consistent with the assumptions made in previously published plasma density models of the comet 67P’s ionosphere at the start and end of the mission. Also, the measured EUV flux is perfectly consistent with independently derived values previously published from LAP and lends support for the conclusions drawn regarding an attenuation of solar EUV from a distant nanograin dust population, when the comet activity was high. The new density dataset is consistent with the existing MIP density dataset, but it facilitates plasma analysis on much shorter timescales, and it also covers long time periods where densities were too low to be measured by MIP.

Funder

Swedish National Space Agency

E och K.G. Lennanders stipendiestiftelse

European Space Agency

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spacecraft Outgassing Observed by the BepiColombo Ion Spectrometers;Journal of Geophysical Research: Space Physics;2024-01

2. The source of electrons at comet 67P;Monthly Notices of the Royal Astronomical Society;2023-09-11

3. Space Plasma Diagnostics and Spacecraft Charging. The Impact of Plasma Inhomogeneities on Mutual Impedance Experiments;Journal of Geophysical Research: Space Physics;2023-08

4. Solar Wind Protons in the Diamagnetic Cavity at Comet 67P/Churyumov‐Gerasimenko;Journal of Geophysical Research: Space Physics;2023-04

5. Ion‐Ion Cross‐Field Instability of Lower Hybrid Waves in the Inner Coma of Comet 67P;Journal of Geophysical Research: Space Physics;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3