Encoding large-scale cosmological structure with generative adversarial networks

Author:

Ullmo Marion,Decelle Aurélien,Aghanim Nabila

Abstract

Recently, a type of neural networks called generative adversarial networks (GANs) has been proposed as a solution for the fast generation of simulation-like datasets in an attempt to avoid intensive computations and running cosmological simulations that are expensive in terms of time and computing power. We built and trained a GAN to determine the strengths and limitations of such an approach in more detail. We then show how we made use of the trained GAN to construct an autoencoder (AE) that can conserve the statistical properties of the data. The GAN and AE were trained on images and cubes issued from two types of N-body simulations, namely 2D and 3D simulations. We find that the GAN successfully generates new images and cubes that are statistically consistent with the data on which it was trained. We then show that the AE can efficiently extract information from simulation data and satisfactorily infers the latent encoding of the GAN to generate data with similar large-scale structures.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3