Viscous heating in the disk of the outbursting star FU Orionis

Author:

Labdon Aaron,Kraus Stefan,Davies Claire L.,Kreplin Alexander,Monnier John D.,Le Bouquin Jean-Baptiste,Anugu Narsireddy,ten Brummelaar Theo,Setterholm Benjamin,Gardner Tyler,Ennis Jacob,Lanthermann Cyprien,Schaefer Gail,Laws Anna

Abstract

Context. FU Orionis is the archetypal FUor star, a subclass of young stellar objects (YSOs) that undergo rapid brightening events, often gaining between four and six magnitudes on timescales of days. This brightening is often associated with a massive increase in accretion, which is one of the most ubiquitous processes in astrophysics for bodies ranging from planets and stars to super-massive black holes. We present multi-band interferometric observations of the FU Ori circumstellar environment, including the first J-band interferometric observations of a YSO. Aims. We investigate the morphology and temperature gradient of the innermost regions of the accretion disk around FU Orionis. We aim to characterise the heating mechanisms of the disk and comment on potential outburst-triggering processes. Methods. Recent upgrades to the MIRC-X instrument at the CHARA array have allowed for the first dual-band J and H observations of YSOs. Using baselines up to 331 m, we present high-angular-resolution data of a YSO covering the near-infrared bands J, H, and K. The unprecedented spectral range of the data allowed us to apply temperature gradient models to the innermost regions of FU Ori. Results. We spatially resolved the innermost astronomical unit of the disk and determine the exponent of the temperature gradient of the inner disk to Tr−0.74 ± 0.02. This agrees with theoretical works that predict Tr−0.75 for actively accreting, steady-state disks, which is a value only obtainable through viscous heating within the disk. We found a disk that extends down to the stellar surface at 0.015 ± 0.007 au, where the temperature is found to be 5800 ± 700 K. We found a disk inclined at 32 ± 4° with a minor-axis position angle of 34 ± 11°. Conclusions. We demonstrate that J-band interferometric observations of YSOs are feasible with the MIRC-X instrument at CHARA. The temperature gradient power-law derived for the inner disk is consistent with theoretical predictions for steady-state, optically thick, viciously heated accretion disks.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference70 articles.

1. The IRAS PSC/FSC Combined Catalogue

2. MIRC-X: A Highly Sensitive Six-telescope Interferometric Imager at the CHARA Array

3. Audard M., Ábrahám P., Dunham M. M., et al. 2014, in Protostars and Planets VI, eds. Beuther H., Klessen R. S., Dullemond C. P., & Henning T. (Tucson, AZ: UNiversity of Arizona Press), 387

4. Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2

5. Instability, turbulence, and enhanced transport in accretion disks

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3